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ABSTRACT 
 
When attempting to understand where people look during scene perception, 
researchers typically focus on the relative contributions of low- and high-level cues. 
Computational models of the contribution of low-level features to fixation selection, 
with modifications to incorporate top-down sources of information have been 
abundant in recent research. However, we are still some way from a model that can 
explain many of the complexities of eye movement behaviour. Here we show that 
understanding biases in how we move the eyes can provide powerful new insights into 
the decision about where to look in complex scenes. A model based solely on these 
biases and therefore blind to current visual information outperformed popular 
salience-based approaches. Our data show that incorporating an understanding of 
oculomotor behavioural biases into models of eye guidance is likely to significantly 
improve our understanding of where we choose to fixate in natural scenes.  
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INTRODUCTION 
 
Successfully completing many forms of behaviour requires that humans look in the 
right place at the right time. Ballard and colleagues described this as a “do-it-where-
I’m-looking” visual strategy for completing complex tasks (Ballard et al., 1992); a 
finding that has been replicated across a range of studies of natural behaviour (e.g., 
Hayhoe et al., 2003; Land & Hayhoe, 2001; Land et al., 1999; Pelz & Canosa, 2001).  
 
One reason why we look at the location we are interested in gathering information 
from is that the human retina evolved such that high quality vision is restricted to the 
small (~2º) fovea at the centre of vision. For many visually-guided behaviours the 
coarse information from peripheral vision is insufficient, thus requiring mechanisms 
to direct the foveae to appropriate locations. This has generated a large volume of 
research aimed at understanding how the eyes are guided (since Buswell, 1935).  
 
Feature-based accounts of eye guidance 
 
One promising approach to understanding eye guidance has been to suppose that 
‘basic’ visual features such as contrast, edges, colour and motion, are extracted from 
the visual scene and used to direct the eyes (e.g., Wolfe & Horowitz, 2004). Support 
for this notion can be found from visual search paradigms in psychophysics, where 
manipulating visual features has clear consequences on the deployment of visual 
attention (Duncan & Humphreys, 1989; Treisman & Gelade, 1980; Wolfe, 1998). 
This notion of basic features guiding attention has been extended to natural scene 
viewing and formalized in models of eye guidance. One prominent such model is the 
visual salience model of Itti, Koch and colleagues (Itti & Koch, 2000; Itti, Koch & 
Niebur, 1998; Koch & Ulman, 1985). Here salience is operationalised as the output of 
a competitive process between a set of basic features (colour-, orientation- and 
luminance-contrast) in order to produce an overall salience map of the scene. Eye 
guidance then unfolds from this using a winner-takes-all selection of the most salient 
location in the scene, with transient inhibition of fixated locations to avoid the model 
becoming stuck.  
 
Despite the prominence of feature-based accounts of eye guidance in recent years, 
empirical evaluations of such models have shown that these are disappointingly poor 
at accounting for human fixation selection (e.g., Henderson et al., 2007; Tatler, 2007; 
Tatler, Baddeley & Gilchrist, 2005; Tatler, Baddeley and Vincent, 2006). In 
particular, when the behavioural task is manipulated, feature-based models can fail 
almost completely (e.g., Einhäuser, Rutishauser & Koch, 2008a; Foulsham & 
Underwood, 2008; Underwood & Foulsham, 2006; Underwood, Foulsham, van Loon, 
Humphreys & Boyce, 2006).  
 
Selectively weighting the different feature channels in Itti’s salience model 
(Navalpakkam & Itti, 2005) is one way to potentially improve feature-based accounts 
and incorporate some degree of high-level modulation (by effectively supplying top-
down knowledge of the target of a visual search). However, even this modification of 
the salience model is very limited for finding real objects in images of natural scenes 
(Vincent, Troscianko & Gilchrist, 2007).  
 



IN PRESS MANUSCRIPT VERSION 
 

Tatler & Vincent  Behavioural biases in eye guidance 
4 

4 

More success has been found by incorporating top-down knowledge of where targets 
are likely to be found in natural scenes (Ehinger, Hidalgo-Sotelo, Torralba & Oliva, 
this issue; Torralba, 2003; Torralba, Oliva, Castelhano & Henderson, 2006). Scene 
gist is used to categorise the scene and look up a spatial probability distribution of 
where the target is likely to be found. The spatial probability distribution is used to 
constrain the feature-level computations to these likely locations.  
 
Despite continued research effort, we remain some way from a coherent 
understanding of the factors that underlie saccade target selection when viewing 
natural scenes and during natural behaviour.  
 
Re-phrasing eye guidance probabilistically  
 
The fundamental question at the heart of any account of eye guidance must be to 
understand the moment-to-moment relocation of gaze: That is, where will the eyes 
select as the target of the next fixation? A convenient way to phrase this question is in 
the language of probabilities. In general we can say that we are interested in knowing 
the probability of making a saccade to a location based upon all the information that 
the oculomotor system has available to it: P(saccade|data). Calculating this spatial 
probability distribution (or map) directly is not necessarily impossible, but by using 
Bayes Theorem we can break this down into simpler components: 
 

P(saccade | data)= P(data|saccade)

P(data)
P(saccade)    (eq. 1) 

 
The beauty of this approach is that the data could come from a variety of sources such 
as simple feature cues, derivations such as Itti’s definition of salience, object- or other 
high-level sources. While this approach is extremely general and flexible in that 
manner, for the present study and for comparability with the studies discussed above, 
we will consider saccade target selection on the basis of the lower-level cues of visual 
salience or simple visual features (in this case, edges). 
 
The first right hand term in equation 1, P(data|saccade)/P(data) describes how the 
visual data might be involved in saccade target selection. Specifically, P(data|saccade) 
is the likelihood of particular visual data (say, particular image features) occurring at 
a saccade target location, and P(data) is the probability distribution of these visual 
data occurring in the environment. As such, dividing P(data|saccade) by P(data) 
effectively controls for the natural abundance of particular features within scenes. For 
example, if yellow items are commonly fixated then one may initially infer that 
yellow items predict fixations, but if yellow items are very common in the scene then 
yellow is a less effective predictor of eliciting fixations. 
 
What is described in this first term bears a close resemblance to approaches 
previously employed to evaluate the possible involvement of visual features in eye 
guidance: Visual feature content at fixation – a measure of P(data|saccade) – is 
compared to features at control locations – an approximation of P(data) – and any 
differences are taken to imply non-random selection with respect to the visual feature 
under investigation (e.g., Mannan, Ruddock & Wooding, 1997; Reinagel & Zador, 



IN PRESS MANUSCRIPT VERSION 
 

Tatler & Vincent  Behavioural biases in eye guidance 
5 

5 

1999; Krieger, Rentschler, Hauske, Schill & Zetzsche, 2000; Parkhurst et al., 2002; 
Parkhurst & Neibur 2003; Tatler, et al., 2005; Baddeley & Tatler 2006; Tatler, et al., 
2006).  
 
The second right hand term in equation 1 is the Bayesian prior, P(saccade). This term 
describes the probability of saccading to a location irrespective of the visual 
information at that location, or indeed anywhere in the scene. As such this term will 
encapsulate any ‘systematic tendencies’ or ‘biases’ in the manner in which we explore 
scenes with our eyes. Systematic tendencies in oculomotor behaviour can be thought 
of as regularities that are common across all instances of, and manipulations to, 
behavioural tasks. Whether or not such systematic biases in how we move our eyes 
can provide useful insight into predicting fixation selection has not been explored in 
previous studies of eye guidance. In the present paper we will explore whether 
understanding these biases can improve our understanding of the moment-to-moment 
decision about where to target with each saccade.  
 
Systematic tendencies in eye guidance 
 
In contrast to our underdeveloped ability to account for oculumotor selection, in other 
aspects of motor behaviour, there have been significant recent advances in our ability 
to model action selection (Körding & Wolpert, 2004). This progress can in part be 
attributed to recognising that action selection is heavily influenced by the fact that 
motor behaviours are not all equally likely to be selected. For example, by recording 
hand movements during daily natural behaviour, it was found that certain 
combinations of finger movements are far more frequently selected than others 
(Ingram, Körding, Howard & Wolpert, 2008). In fact 60% of the variance of finger 
movements during natural behaviour could be described by only the first two 
principal components. The scale of this result clearly demonstrates that knowledge of 
this behavioural bias to select certain actions over others is highly informative in our 
ability to understand and model action selection.  
 
Equivalent approaches have not been used to model visual selection, and our 
understanding of oculomotor behaviour remains underdeveloped. In the present paper 
we ask whether a similar approach to that being used to understand other aspects of 
motor control can be employed to improve current understanding of eye guidance 
when viewing natural scenes. Two clear questions emerge if we are to ask this: (1) Do 
oculomotor behavioural biases exist? (2) What is the relative informativeness of any 
such bias? 
 
The first of these questions is addressed easily: Any survey of the eye movement 
literature reveals a wealth of support for the notion that there are systematic 
tendencies to select certain eye movements over others. For example, our oculomotor 
range is considerable, yet we are not equally likely to make saccades of all possible 
magnitudes. Instead, across a range of experimental paradigms and environments, 
saccade magnitudes show a positively-skewed distribution, with a tendency to make 
small amplitude saccades (e.g., Bahill, Adler & Stark, 1975; Gajewski, Pearson, 
Mack, Bartlett & Henderson, 2005; Pelz & Canosa, 2001; Tatler et al., 2006). 
Similarly, we are far from uniform in selecting which direction to execute saccades in 
(e.g., Bair & O’Keefe, 1998; Lappe, Pekel & Hoffmann, 1998; Lee, Badler & Badler, 
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2002; Moeller, Kayser, Knecht & König, 2004), with a higher frequency of horizontal 
saccades than vertical or oblique saccades (but for an exception to this pattern, Bahill 
et al., 1975, suggested that the majority of saccades made while walking around a real 
environment were oblique). In recent work we explored the possibility that systematic 
tendencies may not be limited to the current saccade, but may exhibit sequential 
dependencies between successive saccades and fixations (Tatler & Vincent, 2008). 
We found that in many cases the properties of one saccade are influenced by the 
properties of the fixation and saccade that immediately preceded it (see also Hooge, 
Over, van Wezel and Frens, 2005; Motter & Belky, 1998; Unema, Panasch, Joos & 
Velichkovsky, 2005). These studies clearly illustrate that there exist systematic 
tendencies in the manner in which we move our eyes around a natural scene, and thus 
such tendencies may offer a previously-untapped source of information about saccade 
target selection.  
 
The second question will be the focus of the present report. Given that there is 
evidence for the existence of systematic tendencies in oculomotor control, we ask 
how informative these are as a component of models of eye guidance. Observing the 
existence of biases does not mean that they necessarily feature in the moment-to-
moment selection of where to fixate. Instead, the observed overall biases may be a 
consequence of other decision factors, such as where visual information is in the 
world. As such, any identified biases need not be significant predictors of where each 
saccade is targeted. If this is the case, we might find that on a saccade-by-saccade 
basis, visual information predicts fixation selection, but oculomotor biases do not. 
However, if we find that oculomotor biases are themselves predictive of fixation 
selection beyond what can be predicted from visual information alone, then the 
tendency to move our eyes in particular ways can offer an informative component of 
our understanding of eye guidance.  
 
If oculomotor biases are informative, it will be important to address the question of 
what these biases reflect: it is not the case that these necessarily reflect purely motoric 
factors; they may arise from a number of sources. For example, there may be high-
level factors that influence these biases – when driving many saccades will be 
launched horizontally, whereas when batting in cricket vertical saccades will 
dominate as the ball is bowled (Land, 2006). Whatever the source of these biases, the 
finding that they are an informative component of fixation selection will be an 
important contribution to current approaches to modelling eye guidance. We will 
return to the issue of the possible sources of systematic oculomotor tendencies in the 
General Discussion.  
 
An established technique for assessing how informative or predictive visual features 
are in eye guidance is to compare the visual feature content at fixated and control 
locations (e.g., Parkhusrt & Niebur, 2003; Parkhurst, Law and Niebur, 2002; Reinagel 
& Zador, 1999; Tatler et al., 2005). The logic is that if we can discriminate the feature 
content at fixated and control locations, then this feature is predictive of where will be 
fixated. Using techniques such as signal detection, we can further estimate the 
magnitude of the discrimination between fixated and control locations and use this as 
an indicator of the extent to which a feature can be informative about fixation 
selection. In the present report, we use the same principle of determining whether 
fixated and control locations can be discriminated. However, we extend this technique 
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to allow us to consider not only the predictive power of visual features, but also that 
of oculomotor biases. To do this we extract not only the image features at each fixated 
and control location, but also the amplitude and direction of the saccade immediately 
preceding each of these real and control fixations (note that this is entirely possible 
for the control locations because we construct our control locations by sampling from 
fixations made on other images by the same participant). We evaluated how well we 
could predict saccade target selection by using a combination of signal detection 
theory and log-likelihood classifiers to discriminate fixated locations from control 
locations.  
 
In order to assess the relative informativeness of visual features and oculomotor 
biases in eye guidance we first assessed how well visual features or oculomotor biases 
alone could be used to predict fixation selection. We then considered how these 
factors may combine to predict fixation, either as independent or interactive factors. 
When testing the ability to predict fixation selection on the basis of visual features, we 
decided to characterise these features in two different manners. First we used the 
popular current model of visual salience (Itti & Koch, 2000), which uses a 
competitive combination of visual feature channels to compute an overall conspicuity 
map. Second, based on previous work by one of the authors, we characterised visual 
features simply in terms of the edge intensity derived from the output of oriented 
Gabor filters, because when interactions between image features are accounted for 
edge intensity was found to be the maximally informative feature for predicting eye 
guidance (Baddeley and Tatler, 2006). Thus the present study offers an opportunity 
not only to assess the relative predictive power of visual features and oculomotor 
biases, but also to compare the complex salience map model to a simple description of 
oriented edge information in scenes.  
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METHOD 
 
Participants 
 
All 22 participants were naïve to the purpose of the experiment and had normal or 
corrected-to-normal vision. Each received monetary reward (£5) or course credit 
toward their undergraduate psychology degree for taking part.  
 
Stimuli and procedure 
 
Each participant viewed 120 colour photographs of natural scenes: 40 indoor, and 80 
outdoor scenes (Figure 3). Images were taken using a Nikon D2 digital SLR at a 
resolution 4 megapixels and later resized to be 1600 x 1200 pixels and represented 
with 24-bit colour depth.  
 
Images were displayed on a Viewsonic P225f 22” pure flat CRT monitor running at a 
refresh rate of 100 Hz. At the viewing distance of 57 cm, the images subtended 
approximately 40º horizontally and 30º vertically in the observer’s field of view.  
 
Participants were given no specific task instructions, merely being asked to freely 
view the images1. Each trial was preceded by a fixation marker positioned randomly 
within 10° of the centre of the screen. Images were presented for five seconds and 
were followed by a white noise mask.  
 
Eye movement recording 
 
Eye movements were recorded using an SR Research Ltd. EyeLink II eye tracker, 
sampling pupil position at 500 Hz. Two 9-point grids were used to calibrate and then 
validate gaze position tracking. If the validation procedure returned a mean spatial 
accuracy of worse than ±0.5°, the eye tracker was re-calibrated. Eye position data 
were collected for the eye that produced the better spatial accuracy as determined 
using the calibration. Saccades and fixations were defined using the saccade detection 
algorithm supplied by SR Research: Saccades were identified by deflections in eye 
position in excess of 0.1º, with a minimum velocity of 30ºs-1 and a minimum 
acceleration of 8000ºs-2, maintained for at least 4 ms. We employed a minimum 
fixation duration of 50 ms. The first fixation in each trial was defined as the first 
fixation that began after the onset of the scene image. Thus the fixation on the pre-
trial fixation marker was not included in the analyses. 
 
Defining visual features and saccade characteristics for fixated locations 
 
Visual features 1: Edges.  
 

                                                 
1 Free viewing is often taken as a task that is free from higher-level ‘baggage’. 
However, this is not the case and free viewing comes with its own set of issues (Tatler 
et al., 2005). We chose this ‘task’ for comparability with other recent studies that have 
evaluated low-level factors in eye guidance. 
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Given our previous finding that edge information was more predictive of fixation 
behaviour than luminance or contrast information (Baddeley & Tatler, 2006), in the 
present paper we chose only to extract edge information at fixated and control 
locations. Edge information was quantified by convolving images with four oriented 
odd-phase Gabor patches (oriented at 0º, 45º, 90º and 135º). The absolute values of 
each orientation map were used in order to capture unsigned difference from the 
mean. These orientation maps were combined and normalised by subtracting the 
mean of the combined map and dividing by its standard deviation, as in our previous 
work (Tatler et al., 2005). Edge maps were constructed over a range of spatial scales, 
using Gabors with envelope standard deviations from 0.625 to 20 cpd. 
 
In order to extract edge information at fixation, 2ºx2º patches were defined, centred 
around the point of the fixation as derived from the eye tracker record. The maximum 
edge feature value within this patch was then calculated and used as the value of edge 
information at fixation (see Figure 2).  
 
Visual features 2: Salience 
 
We calculated the overall salience map for each image using the latest version of Itti’s 
salience algorithm, available at http://www.saliencytoolbox.net. We used the default 
parameter settings for computing our salience maps. For details of this algorithm see 
(Walther & Koch, 2006). Just as for edge information, we extracted salience at 
fixation by taking the maximum value in a 2ºx2º centred with respect to gaze.  
 
Saccade characteristics 
 
Saccade characteristics were also measured for each fixation, extracting the amplitude 
and direction of the saccade that brought the eye to bear on each fixated location (see 
Figure 2). 
 
 
Defining visual features and saccade characteristics of control locations 
 
While we have direct access to fixated image regions from our empirical eye 
movement recordings, we must also define a set of control locations. There are 
several ways in which these control locations and their feature and saccade 
characteristics could be defined. One way to do this would be to uniformly sample 
values (of edge intensities, for example) within the range of edge intensities present in 
the image (see Figure 1), however this has the drawback of not accounting for 
potential correlations in image features over the image. Such correlations may arise 
from the combination of: any compositional bias in capturing the display images (e.g., 
a tendency to take photographs with objects of interest in the centre); and any 
tendency to fixate some parts of images more than others (e.g., the central fixation 
bias, see Tatler, 2007).  
 
FIGURE 1 ABOUT HERE 
 
Alternatively, these distributions could be created by uniformly and randomly 
sampling locations in the image (See Figure 1). This approach also has a drawback of 
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not being a suitable control for the well-known non-random distribution of saccades 
over an image; there is a strong tendency to fixate the approximate centre of an image 
(Tatler, 2007).  
 
We therefore employed a method used in our previous studies, which avoids the 
limitations of the two methods described above (Tatler et al., 2005). The method for 
creating control distributions of edge intensities, visual salience, saccade magnitudes 
and saccade directions is shown schematically for one participant viewing one image 
in Figure 2.  
 
First we complied a list of x-y locations for fixations, together with the magnitudes 
and directions of the saccades that immediately preceded each of these fixations. 
These details were extracted for all fixations on all images excluding the one currently 
being analysed for this participant. We sampled from this list randomly a number of 
times equal to the number of actual fixations made on the current image. In doing this, 
we therefore sampled from actual saccades and fixation locations made by that 
participant but not on the current image. The control saccade magnitude and direction 
distributions were built up cumulatively with this procedure over all images and 
participants. The control feature distributions were constructed by using the sampled 
x-y locations to extract edge intensity from the current image. This procedure is a 
suitable way of constructing control image feature distributions because it accounts 
for the distribution of edge intensities on individual images, while also accounting for 
any spatial biases of the observer.  
 
FIGURE 2 ABOUT HERE 
 
Assessing feature and saccade differences with a log likelihood ratio classifier  
 
In order to assess how much we can predict about eye movements we constructed a 
simple classifier to distinguish fixated image patches (F) from control image patches 
(C). We calculated the performance at distinguishing F from C using a log likelihood 
threshold criterion with: feature information (either edges or salience); saccade bias 
information; both feature and saccade bias information (assuming independence); 
feature and saccade bias (accounting for dependencies between these factors). The 
corresponding log likelihood ratios are respectively: 
 

log
P feature |F( )
P feature |C( )
 

 
 

 

 
                       (eq. 2) 

 

log
P magnitude,direction |F( )
P magnitude,direction |C( )
 

 
 

 

 
                     (eq. 3) 

 

log
P feature, magnitude,direction( ) |F( )
P feature, magnitude,direction( ) |C( )
 

 
  

 

 
         (eq. 4) 
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log
P feature,magnitude,direction |F( )
P feature,magnitude,direction |C( )
 

 
 

 

 
   (eq. 5) 

 
In the above equations, feature corresponds to edge intensity (see above) of a fixated 
location, magnitude is the amplitude of the saccade that brought the eye to the fixated 
location in degrees of visual angle, and direction is the direction in space of the 
saccade where 0º is rightward, -90º is upward. 
 
In order to compute the log likelihood ratios for particular patches, we need to define 
the likelihoods, which are simply probability distributions. We represented these 
probability distributions using histograms because they are non-parametric (thus 
containing no assumptions about the shape of the distributions). This approach does 
have a free parameter (number of histogram bins) per dimension of the probability 
distribution under consideration.  
 
When producing these histograms, it was important to optimise the number of bins 
such that the best description of the underlying distributions was provided. We used 
10-fold cross validation to evaluate the generalisation performance on the test set of 
data for histograms constructed using the training set. Increasing the number of bins 
will always fit the training data better, but as this effectively fits the noise in the data 
set as well as the signal, the performance on the test set will decrease beyond a certain 
number of bins. For the final results, we chose 20 bins for each dimension because 
this corresponded to a clear performance peak when accounting for dependencies 
between feature and saccade information, and had no impact on other conditions. 
 
Of course building probability distributions from all of the fixated image patches and 
then testing the performance of this classifier on that very same data could lead to 
over-fitting, with high performance for these data, but potentially poor generalisation 
to unseen data. We avoided this issue by using 10-fold cross validation. This splits the 
dataset up into 10 parts, so we build 10 sets of probability distributions and then 
report the performance measures on the corresponding 10 test portions of the data. 
Furthermore, the actual quantity reported is the mean and its 95% confidence intervals 
across the 10 cross validation test sets as estimated by bootstrap (Efron & Tibshirani, 
1993). 
 
For any candidate image location, the log likelihood is calculated by using the 
appropriate equation from above (2, 3, 4 or 5). If the log likelihood ratio is greater 
than zero then that patch is more likely to be have been fixated (F) than control (C). In 
this way, over many patches we can calculate percent correct. To clarify, for a 
particular data point in the cross validation test set, the corresponding log likelihood is 
determined by linear interpolation from the log likelihood ratios calculated from the 
training set.  
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RESULTS AND DISCUSSION  
 
Eye movement behaviour 
 
Table 1 shows standard eye movement measures for our dataset. Figure 3 shows 
example plots of three images from this study overlaid with locations fixated by all 
participants (left column). We also show the human fixation locations superimposed 
onto salience maps (middle column) and edge maps (right column) for these scenes. 
 
INSERT TABLE 1 AND FIGURE 3 ABOUT HERE 
 
The Bayesian formulation of how we select the target of our next fixation can 
effectively be broken down into two constituent parts: that which involves the visual 
information in the scene: P(data|saccade)/P(data); and that which involves the 
systematic oculomotor tendencies: P(saccade). From this two-part expression of the 
problem we can postulate at least four simple hypotheses about how these factors may 
contribute to eye guidance: (1) selection is based on visual features/salience alone; (2) 
selection is based on oculomotor tendencies alone, (3) selection involves independent 
contributions from visual features and oculomotor biases, (4) visual features and 
oculomotor biases interact to select saccade targets. It is important to note that in all 
analyses that follow we were testing the ability of a classifier built on a portion of the 
dataset to generalise to new, unseen data. See the Method for further details.    
 
1. Visual features 
 
Salience. Using signal detection theory, we found that fixated and control locations 
could be discriminated. The area under the receiver operator curve (AUC) was 0.565 
(with a 95% confidence interval of 0.562-0.568). This result is significantly different 
from chance discrimination (0.5), but the magnitude of the difference is quite small. A 
log-likelihood classifier based on visual salience information alone was able to 
discriminate fixated from control locations with a performance (proportion correct) of 
0.554 (95% confidence interval: 0.552-0.557).  
 
Edges. For edge information, the AUC was 0.593 (95% confidence interval: 0.590-
0.597). For the log-likelihood classifier, edge information provided a discrimination 
performance (proportion correct) of 0.562 (95% confidence interval: 0.559-0.564).  
 
Our results for edge information alone and for Itti’s full salience model result in very 
similar abilities to discriminate fixated and control locations. These findings are in 
line with previous studies, which have shown significant effects, but with low 
magnitude differences (e.g., Einhäuser, Spain & Perona, 2008b; Nyström & 
Holmqvist, 2008; Tatler et al., 2005)2. These results demonstrate that low-level visual 
information offers some predictive power, but is of limited informativeness in 

                                                 
2 It should be noted that some studies using different methods have reported higher 
ROC AUC values for Itti’s salience map (e.g., Gao, Mahadevan & Vasconcelos, 
2008). However, our values fall in the range of previous studies and where in this 
range we fall does not undermine any comparisons of the relative predictive power of 
salience and motor biases in our dataset.  
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understanding eye guidance. It should also be noted that the simple edge model 
performed similarly to the full salience model (in fact it was significantly better for 
discriminating between fixated and control locations, p < .001). This result raises 
questions about the need for the more complex salience framework. A more 
parsimonious, yet equally effective description of eye guidance might therefore be 
that the portion of eye movement behaviour when looking at complex scenes that can 
be predicted from low-level information can be accounted for in terms of the edge 
information available in scenes. Previous work from our group has also suggested that 
when correlations between contrast, luminance and edge information are accounted 
for, it is edges that provide the best ability to predict fixation selection, and that the 
apparent predictive power of other features can be attributed to their correlation with 
the occurrence of edges (Baddeley & Tatler, 2006). 
 
2. Oculomotor tendencies 
 
Next, we assessed how well oculomotor biases alone can be used to predict where 
human observers fixate. Figure 4 plots the interaction between saccade amplitude and 
direction in our dataset. Saccades in horizontal directions were more frequent than in 
vertical directions (see also Tatler & Vincent, 2008). Moreover, horizontal saccades 
tended to be of larger amplitude than vertical saccades. The plot in Figure 4 can also 
be seen as effectively a prior probability of saccade targeting in retinocentric space, 
with the centre of the plot representing the current location of the eye. 
 
FIGURE 4 ABOUT HERE 
 
It should be noted that by assessing the predictive power of oculomotor biases alone, 
we are effectively testing an extreme and implausible hypothesis: we are effectively 
evaluating a model of fixation selection that is blind to visual information in the 
scene. If low-level visual salience is a prominent factor in selecting where to fixate we 
would expect that this extreme behavioural bias hypothesis should not perform as 
well as the salience or edge models. However, a log-likelihood classifier was able to 
discriminate fixated and control locations on the basis of oculomotor biases alone 
with a performance of 0.648 (95% confidence interval: 0.645-0.650). Therefore, 
feature-based accounts of eye guidance are out-performed when we know only about 
oculomotor biases and know nothing about image features. This striking result 
indicates that biases in how we move our eyes can be highly informative about the 
locations in the world that we select to look at. This result alone poses serious 
challenges to the existing feature- and salience-based frameworks for explaining eye 
movement behaviour. That we can do at least as well, if not considerably better, at 
predicting fixation selection using only knowledge of how we tend to move the eyes, 
underlines the limited explanatory power of existing low-level frameworks.  
 
3. Independent combination of visual features and oculomotor biases 
 
Of course, both of the hypotheses tested above are straw men: No-one really suggests 
that eye guidance operates solely on the basis of low-level image properties. 
Similarly, oculomotor biases alone (with no contribution from visual input!) could not 
be the sole factor. Hence in this and the following section we ask whether we can use 
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oculomotor biases alongside visual feature information in order to increase our ability 
to account for where people fixate. 
 
Performances (in terms of proportion correct) for classifiers based upon independent 
contributions of oculomotor biases and either salience (0.687, 95% CI: 0.685-0.690) 
or edges (0.691, 95% CI: 0.685-0.691) were better than for either oculomotor biases 
or visual features alone. Thus we can see that accounting for both visual information 
and oculomotor characteristics improves our ability to discriminate locations that 
were fixated from control location. We can use this result to suggest that using a 
combination of knowledge of what visual information is present in the scene and how 
humans tend to move their eyes is a useful and informative way of framing eye 
guidance.  
 
4. Interactive combination of visual features and oculomotor biases 
 
Finally, we considered the performance of a classifier based upon the interaction 
between oculomotor tendencies and visual features. For both the salience- and edge-
based versions, we see very high levels of classification performance: For the 
interaction between salience and oculomotor characteristics, discrimination 
performance was 0.800 (95% confidence interval: 0.710-0.894). For the interaction 
between edge and oculomotor characteristics, discrimination performance was 0.822 
(95% confidence interval: 0.785-0.862). Thus there is clear evidence of a strong 
interaction: i.e. if any feature selection is occurring, then its nature varies over the 
visual field.  
 
For ease of comparison we depict the performances of our various log-likelihood 
classifiers graphically in Figure 5. AUC values are also included for the salience- and 
edge-only classifiers in order to allow comparison to previous studies.  
 
FIGURE 5 ABOUT HERE 
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GENERAL DISCUSSION 
 
Like a large number of researchers before us, we set out to ask how well we can 
explain where people fixate in images of natural scenes. However, unlike many 
previous studies, we chose to ask this question from a Bayesian point of view. Simply 
by posing the question of how we select the target of each saccade in this way, we 
immediately identified a previously neglected component of the moment-to-moment 
decision process: the prior probability of saccading to a location irrespective of the 
visual information present. This prior probability is interesting in two respects: First it 
can be seen as capturing any systematic biases that exist in how we move our eyes 
around the visual environment. Second, we found it to be a highly informative 
component of eye guidance.  
 
The ability to predict fixation selection from salience or visual features alone in our 
dataset was in line with a variety of recent studies that have shown significant but 
small predictive ability of low-level factors (e.g., Einhäuser et al., 2008b; Nyström, & 
Holmqvist, 2008). Our finding that oculomotor biases alone were able to predict 
fixation selection better than salience or edge information clearly demonstrates that 
this is a useful source of information about where people will select as the target of 
each saccade. A visual priority map such as Itti’s salience model is thus a much-
oversimplified description of fixation selection. We have shown that by adding to this 
knowledge of where the eye currently is and how it tends to move, we can arrive at a 
surprisingly good description of what will be selected as the target of each new 
fixation. 
 
Our Bayesian framing of the moment-to-moment relocation of gaze has thus provided 
a very simple account whereby fixation selection involves the combination of both the 
(low-level) visual information in the scene and the tendency to move the eyes in 
particular ways. Of course, expanding the account to include specific higher-level 
cues will be crucial in further understanding fixation selection. Importantly, 
extrapolation to any number or any form of cues is achievable within the same simple 
Bayesian explanatory approach. 
 
The origins and implications of oculomotor biases in eye guidance 
 
Given the predictive power of oculomotor biases in our dataset it is important to 
consider these biases in more detail. As we stated in the Introduction, the observation 
of oculomotor biases does not reveal their origin. Certainly, we do not suggest that 
these biases are purely motoric in origin. They may arise from a number of factors, 
from ‘low-level’ biomechanics, to our learnt knowledge of the structure of the world 
and the distribution of objects of interest. We shall now consider some possible 
sources that may contribute to the observed biases.  
 
1. Biomechanical factors 
Oblique movements are executed by coordinating horizontal and vertical muscular 
activity (Becker & Jurgens, 1990) and may have lower efficiency (Pitzalis & Di 
Russo, 2001) than saccades that only involve horizontal or vertical components. It is 
plausible that there are costs associated with coordinating horizontal and vertical 
components of an eye movement such that movements accomplished primarily by 
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only one set of oculomotor muscles are favoured (Smit, Van Gisbergen & Cools, 
1987; Viviani, Berthoz & Tracey, 1977). A tendency to make smaller amplitude 
saccades in favour of larger amplitude saccades could again be argued on the basis of 
metabolic costs: the energy required to create greater tension in the muscles over a 
longer period of time for large saccades than for small saccades would mean that 
larger saccades were more costly. However, metabolic costs are unlikely to be a major 
factor in eye movement control because the inertia of the eyeball is very low 
(Carpenter, 1988; Robinson, 1964). 
  
2. Saccade flight time and landing accuracy 
Saccade targeting precision is likely to be influenced by peripheral acuity limits and 
‘crowding’ effects (e.g., Bouma, 1970; Stuart & Burian, 1962) and indeed smaller 
amplitude saccades tend to be more accurate (e.g., Becker, 1991). Thus targeting 
accuracy could favour small saccades. Small amplitude saccades also minimise flight 
time (e.g., Carpenter, 1988; Robinson, 1964; Collewijn, Erkelens & Steinman, 1988). 
As such, small amplitude saccades will minimise the time that vision is disrupted 
(e.g., Burr, Morrone & Ross, 1994; Matin, 1974; Volkmann, 1976).  
 
3. Uncertainty 
An emerging theme in eye guidance is that saccades may reduce local uncertainty 
(Najemnik & Geisler, 2005; Renninger, Vergheese & Coughlan, 2007; Sprague, 
Ballard & Robinson, 2007). The decline in sampling density with eccentricity in the 
retina is radially asymmetric, declining more rapidly with vertical eccentricity than 
with horizontal eccentricity (Curcio, Sloan, Kalina & Hendrickson, 1990). This means 
that uncertainty increases more rapidly with eccentricity in vertical directions. At first 
this may appear to favour the opposite of our findings: that more vertical saccades 
should be observed. However, Najemnik & Geilser (2008) showed that an ideal 
observer that incorporated this asymmetry in visual sampling produced distributions 
of sacacde direction and amplitude in a search task that closely match our observed 
distributions (their Figure 5). Thus it would appear that the principle of using saccade 
to reduce uncertainty is consistent with our findings.   
 
4. Distribution of objects of interest in the environment 
Properties of the visual environment itself may result in a spatially variant utility 
function for saccade behaviour. Studies of natural scene statistics show that there is 
often most power in the horizontal directions, followed by vertical and finally oblique 
directions (Torralba & Oliva, 2003). It is interesting to compare this to the relative 
frequency of saccade directions we observed (Figure 4): perhaps the abundance of 
horizontal and vertical form in natural scenes influences saccade targeting.  
 
Not only are image statistics non-uniform, but they are also non-uniformly distributed 
in space. Baddeley (1997) showed that, from the autocorrelation function of natural 
scenes, any two features are on average more similar the closer they are in space. 
Correspondingly, regardless of where we fixate, features further from the fovea will 
become on average more different to the location currently fixated. Not only do 
correlations decrease with eccentricity, but the decrease is more rapid in the vertical 
direction than in the horizontal direction from fixation (Baddeley, 1997). While the 
correlations in image statistics follow the same pattern over retinotopic space as does 
the distribution of oculomotor biases that we have described, it is hard to argue that 
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these correlations might underlie our proposed saccade utility function. Indeed most 
saccade targeting models assume the opposite: salience based models (e.g., Itti & 
Koch, 2000; Parkhurst et al., 2002) identify locations with maximal difference from 
their surroundings as likely candidates for saccade targeting.  
 
It may be that the biases are shaped at a much higher level. In natural tasks, objects of 
interest to us in completing the task will not be uniformly distributed around us. For 
example, when making tea in a kitchen (e.g., Land et al., 1999) the objects of interest 
will tend to lie in a horizontal envelope around us; on or near work surfaces, rather 
than on the floor or ceiling. Similar distributions of objects will occur in many real 
tasks, although of course there are exceptions. Could it be that the shape of the 
saccadic biases that we have measured reflects this asymmetric distribution of objects 
in the world around fixation? The idea that the distribution of photoreceptors may be 
optimised to object distributions has been suggested before (Lewis, Garcia & Li, 
2003). Lewis and colleagues used sampling theory to suggest that the distribution of 
objects in the visual environment was very similar to the distribution of cones in the 
human retina.  
 
5. Task parameters 
Finally, it is possible that different behavioural tasks favour different strategies for 
looking. That is, biases in oculomotor behaviour may arise from overall behavioural 
strategies. Anecdotally, this seems plausible given it is easy to generate thought 
experiments that would favour particular sets of eye movements over others. There is 
also empirical evidence that saccade metrics vary between tasks (Rayner, Li, 
Williams, Cave & Well, 2007; Steinman, 2003; Tatler et al., 2006) and strategies 
(Gilchrist & Harvey, 2006). However, there has yet to be a systematic exploration of 
this possibility.  
 
Ecological validity of the described oculomotor biases 
 
In the present study, data were collected with participants seated in a chair, viewing 
images presented on a computer screen and using a head-mounted eye tracker. As 
such, the experimental setting differs in a number of ways from natural behaviour and 
therefore caution must be exercised when extrapolating conclusions drawn about the 
nature of the prior knowledge and about its role in saccade behaviour to real world 
settings. Two factors are particularly important when attempting to evaluate the 
ecological validity of our findings.  
 
First, photographic scenes are in many ways removed from natural environments, in 
terms of the variation in luminance, depth cues and lack of dynamics. Furthermore, 
they are often compositionally biased by implicit or explicit tendencies of the 
photographer to place objects of interest near the centre of the scenes. Placing the 
scene within the bounds of a computer monitor is also likely to influence inspection 
behaviour. The 40° by 30° monitor is much smaller than the approximately 180° 
horizontally by about 80° vertically human binocular field of view. Under natural 
conditions gaze shifts (incorporating eye, head and body rotation) can be up to 180° 
(Land et al, 1999; Land, 2004). Certainly, saccade magnitude distributions are 
influenced by the extent of the image viewed: while the long-tailed distribution 
remains, it scales to the size of the image observed (von Wartburg et al, 2007). Under 
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natural viewing conditions, saccade amplitudes are much greater than when viewing a 
computer screen, with mean saccade amplitudes of up to 20° (Land et al, 1999). The 
screen not only influences the amplitudes of saccades but also introduces a strong bias 
to look near the centre of the screen, irrespective of the distribution of visual features 
in the scene (Tatler, 2007). Thus, the nature of the biases described in our study 
(Figure 4) may reflect aspects of the artificial nature of viewing images on a computer 
screen. However, we feel that this does not weaken our findings because our aim, like 
that of many other contemporary groups, was to consider the factors that allow us to 
explain eye movement behaviour in our experimental setting. Furthermore, even if the 
saccade biases look different during natural behaviour, they may still provide a highly 
informative component of the decision about where to target the next saccade.  
 
Second, data were only collected for a single behavioural task in the present study. 
Theoretically, if we are to describe oculomotor biases fully we should marginalise 
fixation data over all possible behaviours. By limiting ourselves to only considering 
free viewing of scenes, the form of the saccadic biases may be of limited 
generalisability to other behavioural tasks.  
 
Improving our description of oculomotor biases 
 
It should be noted that our description of systematic tendencies in saccade generation 
is very simple: we describe this only in terms of the amplitude and direction of each 
saccade. Describing oculomotor biases in this way effectively treats each saccade as 
an independent event, yet we know that this is not the case: previous studies have 
shown that the amplitude and direction of each saccade can be heavily influenced by 
the amplitude and direction preceding saccade and the duration of the fixation from 
which the saccade is launched (e.g., Tatler & Vincent, 2008; Unema et al., 2005). As 
such, a more comprehensive description of systematic oculomotor biases should 
incorporate these sequential effects into any model of eye guidance. Not only do we 
know that there are sequential dependencies between successive eye movements, but 
we also know that saccade behaviour changes over viewing time (Tatler et al., 2005). 
Understanding when an eye movement is launched is likely to offer further insights 
into behavioural biases and the moment-to-moment decision about where to fixate.  
 
What is the future for salience models? 
 
We feel that the research field has largely reached somewhat of an impasse in 
salience-based approaches to eye guidance. There abound reports of specific failures 
of the basic model to account for certain behavioural tasks. Certainly consensus in the 
community is now that any low-level salience-type scheme will be quite limited in its 
ability to account for the complexities of eye movement behaviour. Our result that a 
visually blind model based only on biases in how we initiate saccades could 
dramatically outperform salience and edge models should in itself perhaps 
collectively motivate us to consider other lines of enquiry. As such, the challenge in 
this field must be to find the right way to move on from this impasse. We feel that an 
understanding of incorporating knowledge of how we tend to move our eyes will 
benefit emerging probabilistic models of eye guidance that attempt to incorporate 
higher-level factors (Ehinger et al., this issue; Kanan et al., this issue). 
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 Mean Median 
Standard 
deviation 

Number of fixations per 
image (5 s viewing period) 

15.0 14.9 1.33 

Fixation duration (ms) 258 250 26.3 
Saccade amplitude 
(degrees) 

7.03 7.22 0.982 

 
TABLE 1. Summary of eye movement measures between participants. All measures 
are reported to 3sf. 
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FIGURE 1. Methods for sampling non-fixated image locations. Distributions are 
shown for edge intensities, saccade amplitudes and saccade directions for fixated 
(solid lines) and control (dashed lines) locations. In Method 1 a uniform distribution 
over each factor for the non-fixated locations is defined. In Method 2 we sample 
uniformly in space and construct the probability distributions of control locations 
from these locations. In Method 3 control distributions of locations were constructed 
by randomly sampling from the set of all fixations made by each individual observer 
on all images, excluding the current image. These coordinates were used to extract 
image feature information from the current image.  
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FIGURE 2. Schematic of how fixated (solid) and control (dashed) distributions 
are calculated. This example demonstrates the procedure for one particular 
participant viewing one particular image (image 2) and is repeated over all images 
and participants. Fixated edge-intensities are simply drawn from the edge intensity 
map (of that image) at locations that subjects fixated. Distributions of saccade 
magnitudes and directions to actually fixated locations are simply calculated from the 
eye tracker data. Similar distributions for control locations are calculated by randomly 
sampling from a set of all actual fixations made by a participant to all images 
excluding image 2. Saccade magnitude and directions come straight from this sample; 
edge-intensities (and salience) are drawn from these locations but from the edge-
intensity (or salience) map from image 2. 
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FIGURE 3. Three sample images from our study, with fixation positions overlaid 
(small dots). For comparison, salience maps (middle column) and edge maps (right 
column) are shown for each image, onto which the fixation locations are also 
overlaid. Fixations are from all participants in the study.  
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FIGURE 4. Saccadic biases. (A) The probability density of making saccades of 
particular magnitudes and directions. There is a clear bias to make saccades in 
horizontal directions more frequently than vertical directions, and to make vertical 
saccades more frequently than saccades in oblique directions. It is interesting to note 
that saccades were more frequently made in an upward direction than in a downward 
direction. (B) Cross sections through the distribution plotted in (A). The dashed line 
shows the distribution of saccade amplitudes for saccades made in all directions. 
There were more longer saccades and fewer small amplitude saccades for horizontal 
saccades (solid black line) than for the overall distribution (dashed line). In contrast, 
vertical saccades (solid grey line) were more frequently of small amplitude than either 
the overall distribution, or horizontal saccades. 
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FIGURE 5. Performance of the classifiers. Performances, as proportion of correct 
classifications for each of the 7 classifiers tested in the present study. From left to 
right, the classifiers tested the ability to correctly classify control and fixated locations 
on the basis of (1) Itti’s salience model alone, (2) edge information alone, (3) saccade 
bias information (saccade amplitude, r, and saccade direction, θθθθ) alone, (4) the 
independent combination of salience and oculomotor biases, (5) the independent 
combination of edges and oculomotor biases, (6) the interaction between salience and 
motor biases, and (7) the interaction between edges and oculomotor biases. Error bars 
indicate 95% confidence intervals across the 10 cross validation test sets, estimated by 
bootstrap. For comparison to other studies we plot the area under the receiver operator 
curve (AUC) for salience and edge information-based fixation selection.  


