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ABSTRACT

When attempting to understand where people lookinguiscene perception,
researchers typically focus on the relative contrdns of low- and high-level cues.
Computational models of the contribution of lowééveatures to fixation selection,
with modifications to incorporate top-down sourcet information have been
abundant in recent research. However, we aressiiie way from a model that can
explain many of the complexities of eye movemeriaveour. Here we show that
understanding biases iow we move the eyes can provide powerful new insigtits
the decision about where to look in complex sceAesiodel based solely on these
biases and therefore blind to current visual infaiion outperformed popular
salience-based approaches. Our data show thatporeding an understanding of
oculomotor behavioural biases into models of eyieance is likely to significantly
improve our understanding of where we choose @tdixn natural scenes.
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INTRODUCTION

Successfully completing many forms of behaviourunegs that humans look in the
right place at the right time. Ballard and colleagulescribed this as a “do-it-where-
I’'m-looking” visual strategy for completing complegasks (Ballard et al., 1992); a
finding that has been replicated across a rangdunfies of natural behaviour (e.g.,
Hayhoe et al., 2003; Land & Hayhoe, 2001; Land.e1899; Pelz & Canosa, 2001).

One reason why we look at the location we are ésted in gathering information

from is that the human retina evolved such thal lgjgality vision is restricted to the

small (~2°) fovea at the centre of vision. For margually-guided behaviours the

coarse information from peripheral vision is inguént, thus requiring mechanisms
to direct the foveae to appropriate locations. Tias generated a large volume of
research aimed at understanding how the eyes atedy(since Buswell, 1935).

Feature-based accounts of eye guidance

One promising approach to understanding eye gueldnas been to suppose that
‘basic’ visual features such as contrast, edgdsuc@nd motion, are extracted from
the visual scene and used to direct the eyes Wajfe & Horowitz, 2004). Support
for this notion can be found from visual searchagagms in psychophysics, where
manipulating visual features has clear consequenoethe deployment of visual
attention (Duncan & Humphreys, 1989; Treisman & ddel 1980; Wolfe, 1998).
This notion of basic features guiding attention bagn extended to natural scene
viewing and formalized in models of eye guidancee @rominent such model is the
visual salience model of Itti, Koch and colleag(its & Koch, 2000; Itti, Koch &
Niebur, 1998; Koch & Ulman, 1985). Here saliencepgrationalised as the output of
a competitive process between a set of basic fsmt(rolour-, orientation- and
luminance-contrast) in order to produce an ovesalience map of the scene. Eye
guidance then unfolds from this using a winner-saéit selection of the most salient
location in the scene, with transient inhibitionfixfated locations to avoid the model
becoming stuck.

Despite the prominence of feature-based accounty@fguidance in recent years,
empirical evaluations of such models have shownhttiese are disappointingly poor
at accounting for human fixation selection (e.genterson et al., 2007; Tatler, 2007;
Tatler, Baddeley & Gilchrist, 2005; Tatler, Baddeland Vincent, 2006). In
particular, when the behavioural task is manipalateature-based models can falil
almost completely (e.g., Einhduser, Rutishauser &ctK 2008a; Foulsham &
Underwood, 2008; Underwood & Foulsham, 2006; Undedy Foulsham, van Loon,
Humphreys & Boyce, 2006).

Selectively weighting the different feature chasneh Itti's salience model
(Navalpakkam & Itti, 2005) is one way to potentyalinprove feature-based accounts
and incorporate some degree of high-level modulafiny effectively supplying top-
down knowledge of the target of a visual searcloweler, even this modification of
the salience model is very limited for finding redljects in images of natural scenes
(Vincent, Troscianko & Gilchrist, 2007).
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More success has been found by incorporating teprdaowledge of where targets
are likely to be found in natural scenes (Ehingidalgo-Sotelo, Torralba & Oliva,
this issue; Torralba, 2003; Torralba, Oliva, Cdsiab & Henderson, 2006). Scene
gist is used to categorise the scene and look sipatial probability distribution of
where the target is likely to be found. The spapiabability distribution is used to
constrain the feature-level computations to thisdy locations.

Despite continued research effort, we remain soma&y virom a coherent
understanding of the factors that underlie sacdadget selection when viewing
natural scenes and during natural behaviour.

Re-phrasing eye guidance probabilistically

The fundamental question at the heart of any adcotirye guidance must be to
understand the moment-to-moment relocation of gahat is, where will the eyes
select as the target of the next fixation? A commnway to phrase this question is in
the language of probabilities. In general we cantkat we are interested in knowing
the probability of making a saccade to a locatiaedal upon all the information that
the oculomotor system has available to it: P(sagjckia). Calculating this spatial
probability distribution (or map) directly is noecessarily impossible, but by using
Bayes Theorem we can break this down into simmgerponents:

P(dati|saccade

P(data)

P(saccade | data) P(saccade) (eq. 1)

The beauty of this approach is that the data cooide from a variety of sources such
as simple feature cues, derivations such as dtéfsition of salience, object- or other

high-level sources. While this approach is extrgmggneral and flexible in that

manner, for the present study and for comparabaitiz the studies discussed above,
we will consider saccade target selection on ttseshaf the lower-level cues of visual

salience or simple visual features (in this cadges).

The first right hand term in equation 1, P(datajade)/P(data) describes how the
visual data might be involved in saccade targetcsiein. Specifically, P(data|saccade)
is the likelihood of particular visual data (sagrficular image features) occurring at
a saccade target location, and P(data) is the bildadistribution of these visual
data occurring in the environment. As such, diwdiR(data|saccade) by P(data)
effectively controls for the natural abundance aftigular features within scenes. For
example, if yellow items are commonly fixated thene mayinitially infer that
yellow items predict fixations, but if yellow itenae very common in the scene then
yellow is a less effective predictor of elicitingdtions.

What is described in this first term bears a clessemblance to approaches
previously employed to evaluate the possible ineolent of visual features in eye
guidance: Visual feature content at fixation — aasuee of P(data|saccade) — is
compared to features at control locations — anagmation of P(data) — and any
differences are taken to imply non-random selectwih respect to the visual feature
under investigation (e.g., Mannan, Ruddock & Wogdih997; Reinagel & Zador,
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1999; Krieger, Rentschler, Hauske, Schill & Zetzch000; Parkhurst et al., 2002;
Parkhurst & Neibur 2003; Tatler, et al., 2005; Beldg & Tatler 2006; Tatler, et al.,
2006).

The second right hand term in equation 1 is theeBay prior, P(saccade). This term
describes the probability of saccading to a locatiocespective of the visual
information at that location, or indeed anywherdha scene. As such this term will
encapsulate any ‘systematic tendencies’ or ‘biagetsie manner in which we explore
scenes with our eyes. Systematic tendencies iroomibr behaviour can be thought
of as regularities that are common across all int&gs. of, and manipulations to,
behavioural tasks. Whether or not such systemaigeb in how we move our eyes
can provide useful insight into predicting fixatiselection has not been explored in
previous studies of eye guidance. In the presepempae will explore whether
understanding these biases can improve our unddmstpof the moment-to-moment
decision about where to target with each saccade.

Systematic tendenciesin eye guidance

In contrast to our underdeveloped ability to ac¢danoculumotor selection, in other
aspects of motor behaviour, there have been stgnifirecent advances in our ability
to model action selection (Koérding & Wolpert, 200Zhis progress can in part be
attributed to recognising that action selectiorhéswvily influenced by the fact that
motor behaviours are not all equally likely to ledested. For example, by recording
hand movements during daily natural behaviour, iaswfound that certain
combinations of finger movements are far more fesly selected than others
(Ingram, Kording, Howard & Wolpert, 2008). In fa80% of the variance of finger
movements during natural behaviour could be desdriby only the first two
principal components. The scale of this resultrtyedemonstrates that knowledge of
this behavioural bias to select certain actiong ateers is highly informative in our
ability to understand and model action selection.

Equivalent approaches have not been used to madahklvselection, and our
understanding of oculomotor behaviour remains wheleloped. In the present paper
we ask whether a similar approach to that beingl isainderstand other aspects of
motor control can be employed to improve currendenstanding of eye guidance
when viewing natural scenes. Two clear questionsrgenif we are to ask this: (1) Do
oculomotor behavioural biases exist? (2) What ésrtiative informativeness of any
such bias?

The first of these questions is addressed easihy gurvey of the eye movement
literature reveals a wealth of support for the mwtithat there are systematic
tendencies to select certain eye movements overotkor example, our oculomotor
range is considerable, yet we are not equallyikelmake saccades of all possible
magnitudes. Instead, across a range of experimeataldigms and environments,
saccade magnitudes show a positively-skewed disimity, with a tendency to make
small amplitude saccades (e.g., Bahill, Adler &rtal975; Gajewski, Pearson,
Mack, Bartlett & Henderson, 2005; Pelz & CanosaQ120Tatler et al., 2006).
Similarly, we are far from uniform in selecting whidirection to execute saccades in
(e.g., Bair & O’Keefe, 1998; Lappe, Pekel & Hoffrmari998; Lee, Badler & Badler,
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2002; Moeller, Kayser, Knecht & Kénig, 2004), wahigher frequency of horizontal
saccades than vertical or oblique saccades (bwarf@xception to this pattern, Babhill
et al., 1975, suggested that the majority of saesadade while walking around a real
environment were oblique). In recent work we ex@tbthe possibility that systematic
tendencies may not be limited to the current saschdt may exhibit sequential
dependencies between successive saccades andrisxéliatler & Vincent, 2008).
We found that in many cases the properties of @oeasle are influenced by the
properties of the fixation and saccade that imntetligoreceded it (see also Hooge,
Over, van Wezel and Frens, 2005; Motter & Belky98,9Unema, Panasch, Joos &
Velichkovsky, 2005). These studies clearly illustrahat there exist systematic
tendencies in the manner in which we move our ayesnd a natural scene, and thus
such tendencies may offer a previously-untappedceocnf information about saccade
target selection.

The second question will be the focus of the preseport. Given that there is
evidence for the existence of systematic tendenaiesculomotor control, we ask
how informative these are as a component of maafeéye guidance. Observing the
existence of biases does not mean that they netgdeature in the moment-to-
moment selection of where to fixate. Instead, theeoved overall biases may be a
consequence of other decision factors, such asewhisual information is in the
world. As such, any identified biases need notigeificant predictors of where each
saccade is targeted. If this is the case, we nfigdtthat on a saccade-by-saccade
basis, visual information predicts fixation selenti but oculomotor biases do not.
However, if we find that oculomotor biases are thelves predictive of fixation
selection beyond what can be predicted from visofdrmation alone, then the
tendency to move our eyes in particular ways céer @n informative component of
our understanding of eye guidance.

If oculomotor biases are informative, it will be portant to address the question of
what these biases reflect: it is not the casettigste necessarily reflect purely motoric
factors; they may arise from a number of sources.dxample, there may be high-
level factors that influence these biases — whanindr many saccades will be
launched horizontally, whereas when batting in k&icvertical saccades will
dominate as the ball is bowled (Land, 2006). Whetteélre source of these biases, the
finding that they are an informative component ofafion selection will be an
important contribution to current approaches to etioth eye guidance. We will
return to the issue of the possible sources otgmyatic oculomotor tendencies in the
General Discussion.

An established technique for assessing how infaumair predictive visual features
are in eye guidance is to compare the visual featontent at fixated and control
locations (e.g., Parkhusrt & Niebur, 2003; Parktjuraw and Niebur, 2002; Reinagel
& Zador, 1999; Tatler et al., 2005). The logichattif we can discriminate the feature
content at fixated and control locations, then te&ture is predictive of where will be
fixated. Using techniques such as signal detectioa, can further estimate the
magnitude of the discrimination between fixated aaodtrol locations and use this as
an indicator of the extent to which a feature can ibformative about fixation

selection. In the present report, we use the sammeiple of determining whether

fixated and control locations can be discriminatéowever, we extend this technique
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to allow us to consider not only the predictive gowf visual features, but also that
of oculomotor biases. To do this we extract noyahé image features at each fixated
and control location, but also the amplitude arréadion of the saccade immediately
preceding each of these real and control fixatigrde that this is entirely possible
for the control locations because we constructoaumtrol locations by sampling from
fixations made on other images by the same paatit)p We evaluated how well we
could predict saccade target selection by usingprabmation of signal detection
theory and log-likelihood classifiers to discrimi@dixated locations from control
locations.

In order to assess the relative informativeneswisdial features and oculomotor
biases in eye guidance we first assessed how wgekhMeatures or oculomotor biases
alone could be used to predict fixation selectidde then considered how these
factors may combine to predict fixation, eitherimdependent or interactive factors.
When testing the ability to predict fixation seleaton the basis of visual features, we
decided to characterise these features in two rdifftemanners. First we used the
popular current model of visual salience (Itti & dfp 2000), which uses a

competitive combination of visual feature channelsompute an overall conspicuity

map. Second, based on previous work by one of utteoes, we characterised visual
features simply in terms of the edge intensity \aiti from the output of oriented

Gabor filters, because when interactions betweeagarfeatures are accounted for
edge intensity was found to be the maximally infative feature for predicting eye

guidance (Baddeley and Tatler, 2006). Thus theeptestudy offers an opportunity

not only to assess the relative predictive powewistial features and oculomotor
biases, but also to compare the complex saliengemualel to a simple description of

oriented edge information in scenes.
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METHOD

Participants

All 22 participants were naive to the purpose @& #xperiment and had normal or
corrected-to-normal vision. Each received monetaward (£5) or course credit
toward their undergraduate psychology degree fonggpart.

Stimuli and procedure

Each participant viewed 120 colour photographsatfiral scenes: 40 indoor, and 80
outdoor scenes (Figure 3). Images were taken usiihgkon D2 digital SLR at a
resolution 4 megapixels and later resized to beéd 1602200 pixels and represented
with 24-bit colour depth.

Images were displayed on a Viewsonic P225f 22” plateCRT monitor running at a
refresh rate of 100 Hz. At the viewing distance53f cm, the images subtended
approximately 40° horizontally and 30° verticaltythe observer’s field of view.

Participants were given no specific task instrucdiomerely being asked to freely
view the images Each trial was preceded by a fixation marker gimséd randomly
within 10° of the centre of the screen. Images weesented for five seconds and
were followed by a white noise mask.

Eye movement recording

Eye movements were recorded using an SR ReseadchEleLink Il eye tracker,
sampling pupil position at 500 Hz. Two 9-point gridere used to calibrate and then
validate gaze position tracking. If the validatiprocedure returned a mean spatial
accuracy of worse that0.5°, the eye tracker was re-calibrated. Eye pmsitdata
were collected for the eye that produced the beipatial accuracy as determined
using the calibration. Saccades and fixations wlefed using the saccade detection
algorithm supplied by SR Research: Saccades wertifiéd by deflections in eye
position in excess of 0.1°, with a minimum velocity 30°6" and a minimum
acceleration of 8000% maintained for at least 4 ms. We employed a minim
fixation duration of 50 ms. The first fixation iraeh trial was defined as the first
fixation that began after the onset of the scenggem Thus the fixation on the pre-
trial fixation marker was not included in the arsasy.

Defining visual features and saccade characteristicsfor fixated locations

Visual features 1: Edges.

! Free viewing is often taken as a task that is firee higher-level ‘baggage’.
However, this is not the case and free viewing cowi¢h its own set of issues (Tatler
et al., 2005). We chose this ‘task’ for compar&pivith other recent studies that have
evaluated low-level factors in eye guidance.
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Given our previous finding that edge informationswaore predictive of fixation
behaviour than luminance or contrast informatioad@eley & Tatler, 2006), in the
present paper we chose only to extract edge infitmmaat fixated and control
locations. Edge information was quantified by cduivw images with four oriented
odd-phase Gabor patches (oriented at 0° 45°, r80435°). The absolute values of
each orientation map were used in order to captmsegned difference from the
mean. These orientation maps were combined andafised by subtracting the
mean of the combined map and dividing by its steshd@viation, as in our previous
work (Tatler et al., 2005). Edge maps were congdiover a range of spatial scales,
using Gabors with envelope standard deviations @85 to 20 cpd.

In order to extract edge information at fixatiodx2° patches were defined, centred
around the point of the fixation as derived frora #ye tracker record. The maximum

edge feature value within this patch was then taled and used as the value of edge
information at fixation (see Figure 2).

Visual features 2: Salience

We calculated the overall salience map for eaclyenssing the latest version of Itti’s
salience algorithm, available at http://www.saligioolbox.net. We used the default
parameter settings for computing our salience miapsdetails of this algorithm see
(Walther & Koch, 2006). Just as for edge informatiave extracted salience at
fixation by taking the maximum value in a 2°x2°tced with respect to gaze.

Saccade characteristics

Saccade characteristics were also measured forfigatibn, extracting the amplitude
and direction of the saccade that brought the eyeeéar on each fixated location (see
Figure 2).

Defining visual features and saccade char acteristics of control locations

While we have direct access to fixated image regifnom our empirical eye
movement recordings, we must also define a setoafral locations. There are
several ways in which these control locations ahdirt feature and saccade
characteristics could be defined. One way to de Wwuld be to uniformly sample
values (of edge intensities, for example) withia tange of edge intensities present in
the image (see Figure 1), however this has the ek of not accounting for
potential correlations in image features over tihhage. Such correlations may arise
from the combination of: any compositional biagapturing the display images (e.g.,
a tendency to take photographs with objects ofréstein the centre); and any
tendency to fixate some parts of images more thhar® (e.g., the central fixation
bias, see Tatler, 2007).

FIGURE 1 ABOUT HERE

Alternatively, these distributions could be createg uniformly and randomly
sampling locations in the image (See Figure 1)sHpiproach also has a drawback of
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not being a suitable control for the well-known rrandom distribution of saccades
over an image; there is a strong tendency to fiks#eapproximate centre of an image
(Tatler, 2007).

We therefore employed a method used in our prevgiudies, which avoids the
limitations of the two methods described above IEFat al., 2005). The method for
creating control distributions of edge intensitieisual salience, saccade magnitudes
and saccade directions is shown schematically riergarticipant viewing one image
in Figure 2.

First we complied a list of x-y locations for fixans, together with the magnitudes
and directions of the saccades that immediatelgeuied each of these fixations.
These details were extracted for all fixations timaages excluding the one currently
being analysed for this participant. We samplednftbis list randomly a number of

times equal to the number of actual fixations maaéhe current image. In doing this,
we therefore sampled from actual saccades andidixdbcations made by that

participant but not on the current image. The adrdgaccade magnitude and direction
distributions were built up cumulatively with thgrocedure over all images and
participants. The control feature distributions &veonstructed by using the sampled
x-y locations to extract edge intensity from therent image. This procedure is a
suitable way of constructing control image featdigtributions because it accounts
for the distribution of edge intensities on indivad images, while also accounting for
any spatial biases of the observer.

FIGURE 2 ABOUT HERE
Assessing featur e and saccade differences with alog likelihood ratio classifier

In order to assess how much we can predict abautreyvements we constructed a
simple classifier to distinguish fixated image p&te (F) from control image patches
(C). We calculated the performance at distinguighinfrom C using a log likelihood
threshold criterion with: feature information (ethedges or salience); saccade bias
information; both feature and saccade bias infolmnatassuming independence);
feature and saccade bias (accounting for deperekehatween these factors). The
corresponding log likelihood ratios are respectivel

o {P(feature F)J (eq. 2)

P(feature [C)

o P(magnl_tude,dl.rectl.oan) (eq. 3)
P(magnitude,directiond)

o P(feature,( magnitude,directh) (€q. 4)
P(feature,( magnitude,directip[C)

10
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Io{ P(feature, magnltude,dlrectloﬁ[)] (eq. 5)

P(feature,magnitude, directio)

In the above equations, feature corresponds to ietigesity (see above) of a fixated
location, magnitude is the amplitude of the sact¢hdebrought the eye to the fixated
location in degrees of visual angle, and directiorthe direction in space of the
saccade where 0° is rightward, -90° is upward.

In order to compute the log likelihood ratios farfcular patches, we need to define
the likelihoods, which are simply probability dibutions. We represented these
probability distributions using histograms becaukey are non-parametric (thus
containing no assumptions about the shape of stehiitions). This approach does
have a free parameter (number of histogram bins)dpeension of the probability
distribution under consideration.

When producing these histograms, it was importaragtimise the number of bins
such that the best description of the underlyirgjrithutions was provided. We used
10-fold cross validation to evaluate the generabsaperformance on the test set of
data for histograms constructed using the traigiety Increasing the number of bins
will always fit the training data better, but assteffectively fits the noise in the data
set as well as the signal, the performance onet$teset will decrease beyond a certain
number of bins. For the final results, we choseb® for each dimension because
this corresponded to a clear performance peak vareounting for dependencies
between feature and saccade information, and haapect on other conditions.

Of course building probability distributions frortl af the fixated image patches and
then testing the performance of this classifiertioait very same data could lead to
over-fitting, with high performance for these ddtat potentially poor generalisation
to unseen data. We avoided this issue by usingltiOefoss validation. This splits the
dataset up into 10 parts, so we build 10 sets obatility distributions and then

report the performance measures on the corresppridintest portions of the data.
Furthermore, the actual quantity reported is thammand its 95% confidence intervals
across the 10 cross validation test sets as estihigt bootstrap (Efron & Tibshirani,

1993).

For any candidate image location, the log likelidhos calculated by using the
appropriate equation from above (2, 3, 4 or 5}h# log likelihood ratio is greater
than zero then that patch is more likely to be Haaen fixated (F) than control (C). In
this way, over many patches we can calculate percemect. To clarify, for a
particular data point in the cross validation st the corresponding log likelihood is
determined by linear interpolation from the logelikood ratios calculated from the
training set.

11
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RESULTS AND DISCUSSION
Eye movement behaviour

Table 1 shows standard eye movement measures fodataset. Figure 3 shows
example plots of three images from this study @renvith locations fixated by all
participants (left column). We also show the hurfigation locations superimposed
onto salience maps (middle column) and edge mag# golumn) for these scenes.

INSERT TABLE 1 AND FIGURE 3 ABOUT HERE

The Bayesian formulation of how we select the tamgeour next fixation can
effectively be broken down into two constituenttpathat which involves the visual
information in the scene: P(datalsaccade)/P(daa§t that which involves the
systematic oculomotor tendencies: P(saccade). Fngsniwo-part expression of the
problem we can postulate at least four simple Hygse#s about how these factors may
contribute to eye guidance: (1) selection is basedisual features/salience alone; (2)
selection is based on oculomotor tendencies al@)eelection involves independent
contributions from visual features and oculomotaasbks, (4) visual features and
oculomotor biases interact to select saccade &wrfjas important to note that in all
analyses that follow we were testing the abilityaaflassifier built on a portion of the
dataset to generalise hiew, unseen data. See the Method for further details.

1. Visual features

Salience. Using signal detection theory, we found that tiechand control locations
could be discriminated. The area under the recaperator curve (AUC) was 0.565
(with a 95% confidence interval of 0.562-0.568)isTtesult is significantly different

from chance discrimination (0.5), but the magnitoflehe difference is quite small. A
log-likelihood classifier based on visual salienoéormation alone was able to
discriminate fixated from control locations wittparformance (proportion correct) of
0.554 (95% confidence interval: 0.552-0.557).

Edges. For edge information, the AUC was 0.593 (95% wmenfce interval: 0.590-
0.597). For the log-likelihood classifier, edgeamhation provided a discrimination
performance (proportion correct) of 0.562 (95% aearice interval: 0.559-0.564).

Our results for edge information alone and fordttull salience model result in very
similar abilities to discriminate fixated and caitfocations. These findings are in
line with previous studies, which have shown sigaifit effects, but with low
magnitude differences (e.g., Einhduser, Spain &o®r 2008b; Nystrom &
Holmaquvist, 2008; Tatler et al., 2005)These results demonstrate that low-level visual
information offers some predictive power, but is lohited informativeness in

2 It should be noted that some studies using diffemeethods have reported higher
ROC AUC values for ltti's salience map (e.g., Gel@ahadevan & Vasconcelos,
2008). However, our values fall in the range ofvpas studies and where in this
range we fall does not undermine any comparisomnisesil ative predictive power of
salience and motor biases in our dataset.

12
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understanding eye guidance. It should also be ntitatl the simple edge model
performed similarly to the full salience model {act it was significantly better for
discriminating between fixated and control locasiop < .001). This result raises
guestions about the need for the more complex resieframework. A more
parsimonious, yet equally effective descriptionege guidance might therefore be
that the portion of eye movement behaviour whekilgpat complex scenes that can
be predicted from low-level information can be agcued for in terms of the edge
information available in scenes. Previous work fraun group has also suggested that
when correlations between contrast, luminance algd enformation are accounted
for, it is edges that provide the best ability tegict fixation selection, and that the
apparent predictive power of other features caattyéuted to their correlation with
the occurrence of edges (Baddeley & Tatler, 2006).

2. Oculomotor tendencies

Next, we assessed how well oculomotor biases atanebe used to predict where
human observers fixate. Figure 4 plots the intevadbetween saccade amplitude and
direction in our dataset. Saccades in horizontactions were more frequent than in
vertical directions (see also Tatler & Vincent, 8Q0Moreover, horizontal saccades
tended to be of larger amplitude than vertical ades. The plot in Figure 4 can also
be seen as effectively a prior probability of salecéargeting in retinocentric space,
with the centre of the plot representing the curlecation of the eye.

FIGURE 4 ABOUT HERE

It should be noted that by assessing the predigpoweer of oculomotor biases alone,
we are effectively testing an extreme and impldasitypothesis: we are effectively
evaluating a model of fixation selection thatbisnd to visual information in the
scene. If low-level visual salience is a prominfator in selecting where to fixate we
would expect that this extreme behavioural biasohygsis should not perform as
well as the salience or edge models. However, dikehood classifier was able to
discriminate fixated and control locations on tresib of oculomotor biases alone
with a performance of 0.648 (95% confidence interga645-0.650). Therefore,
feature-based accounts of eye guidance are outrpestli when we know only about
oculomotor biases and knowothing about image features. This striking result
indicates that biases in how we move our eyes eahighly informative about the
locations in the world that we select to look ahisTresult alone poses serious
challenges to the existing feature- and salienseddrameworks for explaining eye
movement behaviour. That we can do at least as Welbt considerably better, at
predicting fixation selection using only knowledgfehow we tend to move the eyes,
underlines the limited explanatory power of exigtiow-level frameworks.

3. Independent combination of visual features and oculomotor biases
Of course, both of the hypotheses tested abovste® men: No-one really suggests
that eye guidance operates solely on the basisowfldvel image properties.

Similarly, oculomotor biases alone (with no contitibn from visual input!) could not
be the sole factor. Hence in this and the follonsegtion we ask whether we can use
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oculomotor biases alongside visual feature inforomain order to increase our ability
to account for where people fixate.

Performances (in terms of proportion correct) flassifiers based upon independent
contributions of oculomotor biases and either sake(0.687, 95% CI: 0.685-0.690)
or edges (0.691, 95% CI: 0.685-0.691) were beltan for either oculomotor biases
or visual features alone. Thus we can see thatuatog for both visual information
and oculomotor characteristics improves our abildydiscriminate locations that
were fixated from control location. We can use ttesult to suggest that using a
combination of knowledge of what visual informatigrpresent in the scene and how
humans tend to move their eyes is a useful andnrdbve way of framing eye
guidance.

4. | nteractive combination of visual features and oculomotor biases

Finally, we considered the performance of a classibased upon the interaction
between oculomotor tendencies and visual feat@sboth the salience- and edge-
based versions, we see very high levels of classifin performance: For the
interaction between salience and oculomotor charatics, discrimination
performance was 0.800 (95% confidence intervall®-.G.894). For the interaction
between edge and oculomotor characteristics, diguaition performance was 0.822
(95% confidence interval: 0.785-0.862). Thus thisreclear evidence of a strong
interaction: i.e. if any feature selection is oecmg, then its nature varies over the
visual field.

For ease of comparison we depict the performantesuo various log-likelihood
classifiers graphically in Figure 5. AUC values ateo included for the salience- and
edge-only classifiers in order to allow comparisoprevious studies.

FIGURE 5 ABOUT HERE

14



IN PRESS MANUSCRIPT VERSION

Tatler & Vincent Behavioural biases in eye guidanc
15

GENERAL DISCUSSION

Like a large number of researchers before us, wewwseto ask how well we can
explain where people fixate in images of naturanes. However, unlike many
previous studies, we chose to ask this questian fadBayesian point of view. Simply
by posing the question of how we select the taofjetach saccade in this way, we
immediately identified a previously neglected comgat of the moment-to-moment
decision process: the prior probability of saccgdim a location irrespective of the
visual information present. This prior probabilisyinteresting in two respects: First it
can be seen as capturing any systematic biasegxisatin how we move our eyes
around the visual environment. Second, we fountbitbe a highly informative
component of eye guidance.

The ability to predict fixation selection from saiice or visual features alone in our
dataset was in line with a variety of recent stadieat have shown significant but
small predictive ability of low-level factors (e.deinhauser et al., 2008b; Nystrom, &
Holmgvist, 2008). Our finding that oculomotor biasalone were able to predict
fixation selection better than salience or edgermftion clearly demonstrates that
this is a useful source of information about wheeeple will select as the target of
each saccade. A visual priority map such as I#dience model is thus a much-
oversimplified description of fixation selection.eMave shown that by adding to this
knowledge of where the eye currently is and hotends to move, we can arrive at a
surprisingly good description of what will be setxt as the target of each new
fixation.

Our Bayesian framing of the moment-to-moment reiocaof gaze has thus provided
a very simple account whereby fixation selectiorolues the combination of both the
(low-level) visual information in the scene and tiemdency to move the eyes in
particular ways. Of course, expanding the accoanintlude specific higher-level
cues will be crucial in further understanding figat selection. Importantly,
extrapolation to any number or any form of cueadievable within the same simple
Bayesian explanatory approach.

The origins and implications of oculomotor biasesin eye guidance

Given the predictive power of oculomotor biasesour dataset it is important to
consider these biases in more detail. As we siatdte Introduction, the observation
of oculomotor biases does not reveal their ori@ertainly, we do not suggest that
these biases are purely motoric in origin. They raage from a number of factors,
from ‘low-level’ biomechanics, to our learnt knowbtge of the structure of the world
and the distribution of objects of interest. We Islm@w consider some possible
sources that may contribute to the observed biases.

1. Biomechanical factors

Obliqgue movements are executed by coordinatingzbotal and vertical muscular
activity (Becker & Jurgens, 1990) and may have loe#iciency (Pitzalis & Di
Russo, 2001) than saccades that only involve hotd@amr vertical components. It is
plausible that there are costs associated withdowating horizontal and vertical
components of an eye movement such that movementsmglished primarily by
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only one set of oculomotor muscles are favouredit(Svtan Gisbergen & Cools,
1987; Viviani, Berthoz & Tracey, 1977). A tendentty make smaller amplitude
saccades in favour of larger amplitude saccadelsl @gain be argued on the basis of
metabolic costs: the energy required to createtgrdansion in the muscles over a
longer period of time for large saccades than foals saccades would mean that
larger saccades were more costly. However, metaboftts are unlikely to be a major
factor in eye movement control because the inesfiadhe eyeball is very low
(Carpenter, 1988; Robinson, 1964).

2. Saccade flight time and landing accuracy

Saccade targeting precision is likely to be influesh by peripheral acuity limits and
‘crowding’ effects (e.g., Bouma, 1970; Stuart & Bur, 1962) and indeed smaller
amplitude saccades tend to be more accurate gegker, 1991). Thus targeting
accuracy could favour small saccades. Small and@isaccades also minimise flight
time (e.g., Carpenter, 1988; Robinson, 1964; CajileviErkelens & Steinman, 1988).

As such, small amplitude saccades will minimise tihge that vision is disrupted

(e.g., Burr, Morrone & Ross, 1994; Matin, 1974; kfoknn, 1976).

3. Uncertainty

An emerging theme in eye guidance is that saccadss reduce local uncertainty
(Najemnik & Geisler, 2005; Renninger, Vergheese &u@hlan, 2007; Sprague,
Ballard & Robinson, 2007). The decline in sampldensity with eccentricity in the
retina is radially asymmetric, declining more rdpidith vertical eccentricity than
with horizontal eccentricity (Curcio, Sloan, Kali&aHendrickson, 1990). This means
that uncertainty increases more rapidly with eageity in vertical directions. At first
this may appear to favour the opposite of our figdi that more vertical saccades
should be observed. However, Najemnik & GeilserO8@0showed that an ideal
observer that incorporated this asymmetry in visahpling produced distributions
of sacacde direction and amplitude in a search ttzeskclosely match our observed
distributions (their Figure 5). Thus it would appézat the principle of using saccade
to reduce uncertainty is consistent with our firgdin

4. Distribution of objects of interest in the environment

Properties of the visual environment itself mayutesn a spatially variant utility
function for saccade behaviour. Studies of natscehe statistics show that there is
often most power in the horizontal directions,daled by vertical and finally oblique
directions (Torralba & Oliva, 2003). It is interggf to compare this to the relative
frequency of saccade directions we observed (Fig)rgoerhaps the abundance of
horizontal and vertical form in natural scenesuefices saccade targeting.

Not only are image statistics non-uniform, but tlaeg also non-uniformly distributed
in space. Baddeley (1997) showed that, from thecautelation function of natural
scenes, any two features ame average more similar the closer they are in space.
Correspondingly, regardless of where we fixatetuies further from the fovea will
become on average more different to the locatiomeatly fixated. Not only do
correlations decrease with eccentricity, but therelese is more rapid in the vertical
direction than in the horizontal direction fromdbon (Baddeley, 1997). While the
correlations in image statistics follow the sam#gya over retinotopic space as does
the distribution of oculomotor biases that we hdescribed, it is hard to argue that
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these correlations might underlie our proposedadeaitility function. Indeed most
saccade targeting models assume the oppositensalizgased models (e.g., Itti &
Koch, 2000; Parkhurst et al., 2002) identify looa with maximal difference from
their surroundings as likely candidates for sacc¢adgeting.

It may be that the biases are shaped at a muclemligyel. In natural tasks, objects of
interest to us in completing the task will not beformly distributed around us. For
example, when making tea in a kitchen (e.g., Laral.e1999) the objects of interest
will tend to lie in a horizontal envelope around as or near work surfaces, rather
than on the floor or ceiling. Similar distribution$ objects will occur in many real
tasks, although of course there are exceptionsldCibwbe that the shape of the
saccadic biases that we have measured reflectagfasmetric distribution of objects
in the world around fixation? The idea that therdsition of photoreceptors may be
optimised to object distributions has been suggebifore (Lewis, Garcia & Li,
2003). Lewis and colleagues used sampling theosugmest that the distribution of
objects in the visual environment was very simitathe distribution of cones in the
human retina.

5. Task parameters

Finally, it is possible that different behavioutakks favour different strategies for
looking. That is, biases in oculomotor behaviouryragse from overall behavioural
strategies. Anecdotally, this seems plausible giiteis easy to generate thought
experiments that would favour particular sets & myovements over others. There is
also empirical evidence that saccade metrics vastwéden tasks (Rayner, Li,
Williams, Cave & Well, 2007; Steinman, 2003; Tatkdr al., 2006) and strategies
(Gilchrist & Harvey, 2006). However, there has tebe a systematic exploration of
this possibility.

Ecological validity of the described oculomotor biases

In the present study, data were collected withi@pents seated in a chair, viewing
images presented on a computer screen and usiegdirhounted eye tracker. As
such, the experimental setting differs in a nundievays from natural behaviour and
therefore caution must be exercised when extrapgl@onclusions drawn about the
nature of the prior knowledge and about its rolesaccade behaviour to real world
settings. Two factors are particularly importantewhattempting to evaluate the
ecological validity of our findings.

First, photographic scenes are in many ways reméread natural environments, in
terms of the variation in luminance, depth cues lac# of dynamics. Furthermore,
they are often compositionally biased by implicit explicit tendencies of the
photographer to place objects of interest nearctrdre of the scenes. Placing the
scene within the bounds of a computer monitor $8 dikely to influence inspection
behaviour. The 40° by 30° monitor is much smallent the approximately 180°
horizontally by about 80° vertically human binogufeeld of view. Under natural
conditions gaze shifts (incorporating eye, head laodly rotation) can be up to 180°
(Land et al, 1999; Land, 2004). Certainly, saccadggnitude distributions are
influenced by the extent of the image viewed: wrilhe long-tailed distribution
remains, it scales to the size of the image obsefwen Wartburg et al, 2007). Under
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natural viewing conditions, saccade amplitudeshaneh greater than when viewing a
computer screen, with mean saccade amplitudes o @p° (Land et al, 1999). The
screen not only influences the amplitudes of saes&dit also introduces a strong bias
to look near the centre of the screen, irrespecfibe distribution of visual features
in the scene (Tatler, 2007). Thus, the nature ef lilases described in our study
(Figure 4) may reflect aspects of the artificialura of viewing images on a computer
screen. However, we feel that this does not weakeriindings because our aim, like
that of many other contemporary groups, was toidenshe factors that allow us to
explain eye movement behaviour in our experimesgtting. Furthermore, even if the
saccade biases look different during natural behaythey may still provide a highly
informative component of the decision about whereatget the next saccade.

Second, data were only collected for a single bielaal task in the present study.
Theoretically, if we are to describe oculomotorses fully we should marginalise
fixation data overll possible behaviours. By limiting ourselves to oobnsidering
free viewing of scenes, the form of the saccadiasés may be of limited
generalisability to other behavioural tasks.

Improving our description of oculomotor biases

It should be noted that our description of systértandencies in saccade generation
is very simple: we describe this only in terms e amplitude and direction of each
saccade. Describing oculomotor biases in this wigctvely treats each saccade as
an independent event, yet we know that this isthetcase: previous studies have
shown that the amplitude and direction of eacha#dexan be heavily influenced by
the amplitude and direction preceding saccade h@dltiration of the fixation from
which the saccade is launched (e.g., Tatler & \ihc2008; Unema et al., 2005). As
such, a more comprehensive description of systenm@atulomotor biases should
incorporate these sequential effects into any motlelye guidance. Not only do we
know that there are sequential dependencies betaigmessive eye movements, but
we also know that saccade behaviour changes ogeing time (Tatler et al., 2005).
Understanding when an eye movement is launcheéaly lto offer further insights
into behavioural biases and the moment-to-momerisid® about where to fixate.

What isthefuturefor salience models?

We feel that the research field has largely reacbashewhat of an impasse in
salience-based approaches to eye guidance. Thevadieports of specific failures
of the basic model to account for certain behawabtasks. Certainly consensus in the
community is now that any low-level salience-typaesme will be quite limited in its
ability to account for the complexities of eye mment behaviour. Our result that a
visually blind model based only on biases in how imngiate saccades could
dramatically outperform salience and edge modelsulgh in itself perhaps
collectively motivate us to consider other lineseofjuiry. As such, the challenge in
this field must be to find the right way to move foom this impasse. We feel that an
understanding of incorporating knowledge tmiw we tend to move our eyes will
benefit emerging probabilistic models of eye gumaithat attempt to incorporate
higher-level factors (Ehinger et al., this issuankin et al., this issue).
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Mean Median Standgrd
deviation
Number of fixations per 15.0 14.9 133
image (5 s viewing period)
Fixation duration (ms) 258 250 26.3

Saccade amplitude

(degrees) 7.03 7.22 0.982

TABLE 1. Summary of eye movement measures betweeticgpants. All measures
are reported to 3sf.
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FIGURE 1.Methods for sampling non-fixated image locations. Distributions are
shown for edge intensities, saccade amplitudessaedade directions for fixated
(solid lines) and control (dashed lines) locatidnsMethod 1 a uniform distribution
over each factor for the non-fixated locations &firted. In Method 2 we sample
uniformly in space and construct the probabilitgtdbutions of control locations
from these locations. In Method 3 control distribos of locations were constructed
by randomly sampling from the set of all fixatiomade by each individual observer
on all images, excluding the current image. Thesadinates were used to extract
image feature information from the current image.
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FIGURE 2.Schematic of how fixated (solid) and control (dashed) distributions
are calculated. This example demonstrates the procedure for ondicplar
participant viewing one particular image (imagea®y is repeated over all images
and participants. Fixated edge-intensities are lsirdpawn from the edge intensity
map (of that image) at locations that subjects téda Distributions of saccade
magnitudes and directions to actually fixated lmeet are simply calculated from the
eye tracker data. Similar distributions for contomations are calculated by randomly
sampling from a set of all actual fixations made dyparticipant to all images
excluding image 2. Saccade magnitude and directione straight from this sample;
edge-intensities (and salience) are drawn frometHesations but from the edge-
intensity (or salience) map from image 2.

26



IN PRESS MANUSCRIPT VERSION

Tatler & Vincent Behavioural biases in eye guidanc
27

FIGURE 3. Three sample images from our study, Mixhtion positions overlaid
(small dots). For comparison, salience maps (middlemn) and edge maps (right
column) are shown for each image, onto which thetion locations are also
overlaid. Fixations are from all participants i tstudy.
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FIGURE 4. Saccadic biases. (A) The probability density of making saccades of
particular magnitudes and directions. There is earclbias to make saccades in
horizontal directions more frequently than vertidadections, and to make vertical
saccades more frequently than saccades in obligeetidns. It is interesting to note
that saccades were more frequently made in an apelieection than in a downward
direction. (B) Cross sections through the distiifrutplotted in (A). The dashed line
shows the distribution of saccade amplitudes facades made in all directions.
There were more longer saccades and fewer smalitadg saccades for horizontal
saccades (solid black line) than for the overadtribution (dashed line). In contrast,
vertical saccades (solid grey line) were more festly of small amplitude than either
the overall distribution, or horizontal saccades.
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FIGURE 5.Performance of the classifiers. Performances, as proportion of correct
classifications for each of the 7 classifiers téste the present study. From left to
right, the classifiers tested the ability to cotigclassify control and fixated locations
on the basis of (1) Itti's salience model along,d@ge information alone, (3) saccade
bias information (saccade amplitude, and saccade directio®) alone, (4) the
independent combination of salience and oculombiases, (5) the independent
combination of edges and oculomotor biases, (6)riteeaction between salience and
motor biases, and (7) the interaction between edgdsculomotor biases. Error bars
indicate 95% confidence intervals across the 18scvalidation test sets, estimated by
bootstrap. For comparison to other studies wetpltrea under the receiver operator
curve (AUC) for salience and edge information-baseation selection.
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